

Current release: 6/6/2017

Product Manual

Site JavaScript API

Selligent

The contents of this manual cover material copyrighted by Selligent.

This manual cannot be reproduced, in part or in whole, or distributed or transferred by means electronic or mechanical,

or photocopied, without the prior written consent of a representative from Selligent.

version 1.7

2 Foreword

1 Foreword
Copyright

The contents of this manual cover material copyrighted by Selligent. Selligent reserves all intellectual
property rights on the manual, which should be treated as confidential information as defined under the
agreed upon software license/lease terms and conditions.

The use and distribution of this manual is strictly limited to authorized users of the Selligent Interactive
Marketing Software (hereafter the “Software”) and can only be used for the purpose of using the Software
under the agreed upon software license/lease terms and conditions. Upon termination of the right to use
the Software, this manual and any copies made must either be returned to Selligent or be destroyed, at the
latest two weeks after the right to use the Software has ended.

With the exception of the first sentence of the previous paragraph, no part of this manual may be reprinted
or reproduced or distributed or used in any form or by any electronic, mechanical or other means, not
known or hereafter invented, included photocopying and recording, or in any information storage or
retrieval or distribution system, without the prior permission in writing from Selligent.

Selligent will not be responsible or liable for any accidental or inevitable damage that may result from
unauthorized access or modifications.

User is aware that this manual may contain errors or inaccuracies and that it may be revised without
advance notice. This manual is updated frequently.

Selligent welcomes any recommendations or suggestions regarding the manual, as it helps to continuously
improve the quality of our products and manuals.

3 Table of Contents

2 Table of Contents

1 Foreword ... 2

2 Table of Contents .. 3

3 Standard include script .. 4

4 API Overview ... 5

4.1 Tracking ... 5

4.2 Targeting .. 8

4.3 Recommendations ... 12

4.4 Disable behavioral tracking ... 12

4.5 Using exposedFields .. 14

4 Standard include script

3 Standard include script
The following script should be included on the website and will be provided with the Site web tool, all
variables will be pre-filled and are here replaced with placeholders.

var wa = document.createElement('script'),
 wa_s = document.getElementsByTagName('script')[0];
wa.src = '//path_to_script_will_be_provided_in_tool/xxxxxx.js ';
wa.type = 'text/javascript';
wa_s.parentNode.insertBefore(wa, wa_s);
wa.bt_queue = [];
wa.afterInit = function()
{
 wa.bt_queue.push(JSON_OBJECT);
};

The property wa.src refers to the tracking js file in the Site module. The installation path may differ from
one installation to another.

This is the standard way the script can be included. The following section will provide an example of how a
tracking call can be performed.

5 API Overview

4 API Overview

4.1 Tracking
In order to perform a tracking call we need to push a json-object (tracking definition) onto a queue. This is
done with the instruction wa.bt_queue.push(JSON-OBJECT).

Site constantly evaluates the queue and performs a tracking call based on the provided configuration per
item, logging the user activity and returning the requested data. All parameters belonging to this call have
to be passed as a JSON object.

The following table will provide an overview of all the different properties which can be passed in the
configuration-object. A tracking-call example is shown below:

Property Default value Description

customIdentifier empty Sets a possible custom identifier by which the user is uniquely
defined. Typically, this will be a value by which you will be able to
recognize users between different sessions (for instance login id or
guid).

It is of great importance that the value provided here is valid and
unique per user. If no customIdentifier is known at the time of the
call, this property should not be included in the tracking call

tagValues empty A JSON array of tags with their corresponding tag-values. These are
the tags that will actually be measured:
[
 {
 “tag”:”CATEGORY”,
 “value”:”CYCLING”
 }, {
 “tag”:”ZIPCODE”,
 “value”:”3800”
 }
]

Note: If TRAFFICSOURCE is included in the tracking call, the
corresponding system tag is overruled. Possible values for
TARFFICSOURCE are :

 Search,
 PaidSearch
 Social
 Affiliate
 Direct
 Email

finishedCallback empty It is possible to supply a function which is executed once the tracking
call is successfully finished.

For instance this can be useful when we would like to make sure that
the segment evaluation has occurred on the last tracking data and
hence the tracking call is finished, a callback can be supplied.

Example Function:

window.bt_trackingFinishedCallback = function (data) {

 var profileInfo = data;

}

errorCallback empty Similar to the finishedCallback, it is possible to supply a function
which is executed once the tracking call has finished with an error.

The parameter for this function is the trackingCall for which the error
has occurred.

6 API Overview

Property Default value Description

Example function:

window.bt_trackingErrorCallback = function (data) {

 var trackingCall = data;

}

async true Whether the tracking call should be performed asynchronous or not.

isEvent false Whether the tracking call represents an event on the website instead
of a page visit

isTrack true Whether to perform tracking or not. Setting this to false will allow you
for example to perform targeting without actually tracking a new hit.
Typically used when targeting should only be done after tracking and
some extra custom javascript has been executed.

isTargeting false Whether the tracking call is used for targeting. If so, the call will only
be executed when the DOM is ready. The call will make sure the
found placeholders are properly filled with offer/action-content.

Important remark: Site only adds content to the website, it doesn’t
remove it. So, if isTargeting is set to true and a profile is currently in
an audience for which specific content must displayed on the website,
this content will be shown. If at a certain moment in time the profile
is no longer in this audience, the content will still be displayed on the
website (eg. An offer exists where some content is shown when the
profile has at least one item in his cart. When a profile adds an item in
the cart and the property isTargeting is set to true, the offer is
evaluated and the content is shown. However, if the profile removes
the item from the cart and the property isTargeting is set to true, the
offer is re-evaluated but the content will NOT be removed although
the profile is no longer in the audience.

exposedFields empty Used to retrieve exposed fields that are configured in the universe.
See section 4.4 Using exposedFields for more information.

profileData empty [DEPRECATED] Use exposedFields

The property is still available for compatibility reasons, but should no
longer be used, it may be removed in the future.

tagValueData empty [DEPRECATED] Use exposedFields

The property is still available for compatibility reasons, but should no
longer be used, it may be removed in the future.

CRMData empty [DEPRECATED] Use exposedFields

The property is still available for compatibility reasons, but should no
longer be used, it may be removed in the future.

events empty A JSON array of events with their type, itemName and itemId.
Currently, only view and read are available as event types.
The itemName refers to the item entity that can be configured within
the universe.
The itemId should be the customer’s unique identifier for the event
resource (e.g. the article being read).

[
 {
 “type”:”view”,
 “itemName”:”ARTICLE” ,

7 API Overview

Property Default value Description

 “itemId”:”1000”
 }, {
 “type”:”read”,
 “itemName”:”ARTICLE” ,
 “itemId”:”1002”
 }
]

items empty A JSON array of items with the item’s name, id, referenceDate and
fields.
The name of the item should correspond to the public name that is
defined within the universe.
The id should be the customer’s unique identifier of the item
resource.
The referenceDate specifies when the content has last been updated.
The fields property is a JSON object that contains the fields containing
the content for the current item. The field names should correspond
to the item definition in the universe.

[
 {
 “name”:”ARTICLE”,
 “id”:”1000”,
 “referenceDate”:”2017-06-06T12:00:00” ,
 “fields”: {
 “title”: “Title of article 1000”,
 “description”: “Description of article 1000”,
 “imgUrl”: “http://articles.com/1000”
 }
 }, {
 “name”:”ARTICLE”,
 “id”:”1002”,
 “referenceDate”:”2017-06-06T14:00:00” ,
 “fields”: {
 “title”: “Title of article 1002”,
 “description”: “Description of article 1002”,
 “imgUrl”: “http://articles.com/1002”
 }
 }
]

8 API Overview

Following is an example of a tracking call:

wa.bt_queue.push({
 "customIdentifier": "12345",
 "tagValues":[
 { "tag": "CATEGORY", "value": "CYCLING" },
 { "tag": "ZIPCODE", "value": "3800" },
 { "tag": "INTEREST", "value": "SPORT" }
],
 "finishedCallback": "bt_trackingFinishedCallback",
 “errorCallback”: “bt_errorCallback”,
 "async": false,
 "isEvent": false,
 "isTargeting": false,
 "exposedFields" : [
 { "field": "Reidentified"},
 { "field": "Identified"},
 { "field": "CustomId"},
 { "field": "FirstHitDateTime"},
 { "field": "AvgVisitDuration"},
 { "field": "HitsVisit"},
 { "field": "DAYOFWEEK", "type": "Count", "parameter": ""},
 { "field": "BOUGHTITEMS", "type": "Count", "parameter": ""},
 { "field": "MAIL"},
 { "field": "NAME"},
]
});

4.2 Targeting
The following methods are available in the API:

Function Description

BT.getProfileInfo() Returns an object with profile-information. This is the same object that is
returned to the callback-function when performing the tracking-call.

Note that the names returned for offers, tags and profile-fields are the internal
public names.

{
 "profileId": "aaa-aaa-aaa-aaa-aaa",
 "profileInfo": {
 "offers": [
 { "name": "OfferName", "inOffer": false,
 "date": "2014-04-15T17:15:08.375+02:00" }
],
 "exposedFields": [
 { "field": "tagName", value:["value1", "value2"]},
 { "field": "aaa", value:["xxx"]},
 { "field": "fieldName", value:["xxx"]},
],
 "tags": [
 { "name": "tagName", "values: ["value1", "value2"]}
],
 "CRMFields": [
 { "name": "aaa", "value": "xxx" }
],
 "profileFields": [
 { "name": "fieldname", "values": "xxx" }
]
 }
}

Note: the boolean indicates if the profile is in the offer or not. It is still possible
that even if the boolean is 1 (so the profile is in the offer) that the offer is not
shown. (ex. The offer domain does not correspond with the current domain; or

9 API Overview

Function Description

the planning of the offer prevents it from being shown; or there is another
offer with higher priority;…)

BT.saveProfileInfo() Stores the returned profile-info in local storage or a cookie with name
“sbt_pi”.

BT.clearProfileInfo() Clears the sbt_pi-stored value (if it exists).

BT.isCustomIdentified() Returns a Boolean indicating if the web site visitor is custom-identified or not.
This function will only return a Boolean if isCustomIdentified was selected in
the exposable fields in the universe configuration.

BT.isThirdPartyIdentified() Returns a Boolean indicating if the web site visitor is third-party-identified or
not.
This function will only return a Boolean if isThirdPartyIdentified was selected
in the exposable fields in the universe configuration.

BT.isInOffer(offer) Returns a Boolean (true or false) indicating if the web site visitor is inside the
offer-target-audience or not.

Note: the boolean indicates if the profile is in the offer or not. It is still possible
that even if the boolean is 1 (so the profile is in the offer) that the offer is not
shown. (ex. The offer domain does not correspond with the current domain; or
the planning of the offer prevents it from being shown; or there is another
offer with higher priority;…)

offer = The public offer name for which inclusion should be checked.

BT.getOffers() Returns an array of objects for all the offers the user has been or is in the Site-
audience.

Each returned offer-object contains:

- name: the public name of the offer.
- isInOffer: Boolean indicating if the user is still in the Site-audience.
- date:

o if isInOffer is true, this is the date and time the user joined the
offer-Site.

Note: the boolean indicates if the profile is in the offer or not. It is still possible
that even if the boolean is 1 (so the profile is in the offer) that the offer is not
shown. (ex. The offer domain does not correspond with the current domain; or
the planning of the offer prevents it from being shown; or there is another
offer with higher priority;…)

o If isInOffer is false, this is the date and time the user dropped
out of the offer-Site.

BT.getOffer(offer) Returns, if found, the offer-object for the given offer-name.

offer = The public offer name to search for.

BT.getProfileId() Returns the unique identifier (hash) for the current profile.

BT.getExposedFields() Returns an array of of objects for all the exposedFields that were returned in
the tracking call.
See section 4.4 Exposed Fields for more information.

BT.getExposedField(fieldname) Returns, if found, a single exposed field object for the requested field name.
See section 4.4 Exposed Fields for more information.

BT.getCrmFields() [DEPRECATED] Use getExposedFields

10 API Overview

Function Description

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

-

BT.getCrmField(field) [DEPRECATED] Use getExposedField(fieldname)

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

BT.getProfileField(field) [DEPRECATED] Use getExposedField

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

BT.getTags() [DEPRECATED] Use getExposedFields

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

-

BT.getTag(tagName) [DEPRECATED] Use getExposedFields

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

BT.addTag(tag, value) Adds a tag-value-pair onto the internal processing-queue.
This tag will be recorded in the next tracking-call.

BT.optout(period, offer) When no arguments are specified for the optout function, a cookie with name
“behavioral-disable-track” is stored to disable all behavioral tracking. To undo
the opt-out, the user should manually remove this cookie or the method
BT.optin() should be called.

To optout of all offers for a specified time, specify a period in minutes, in this
case the cookie will not be created and Site will handle the optout.

To optout of a specific offer for a specific time also specify the public name of
the offer.

BT.undoOptout() [DEPRECATED] Use BT.optin()

The function is still available for compatibility reasons, but should no longer be
used, it may be removed in the future.

BT.optin(offer) Clears the behavioral-optout-cookie if set.
If an offer is specified and the user has an active optout for that offer, it will be
cleared and the user will start receiving that offer again.

BT.trackActivity(offer, activity) Tracks an activity defined on an Offer as “via API”. As parameters, the public
name for the offer and the unique name for the activity should be passed.

offer = The public offer name to track activity for.
activity = The activity name to track activity for.

BT.trackClick(object) The object contains the content id and one or more callback functions.
The function measures a click-event for a popup or popin opened for an offer,
since these can’t be tracked automatically in a consistent way. This allows the
user to only sense the click when (a) specific element(s) in the popup/popin
is/are clicked. (e.g. an OK-button).

11 API Overview

Function Description

E.g.

BT.trackClick ({
 “id”: “~@CONTENTID~”,
 “finishedCallback”: function(data) {
 console.log(data);
 },
 “errorCallback”: function(trackingCall) {
 console.log(trackingCall);
 }
});

BT.addCartItems(cartName, items,
isTargeting)

Adds the specified items to the cart with the specified name. As parameters,
the public name for the cart, the list of items and the isTargeting flag should be
passed.

cartName = The public name of the cart to which the items should be added
items = A json array containing the items that should be added to the cart.
Each item should contain an identifier, a value and a quantity.
isTargeting = This flag indicates whether or not this call should be used for
targeting.

E.g.

BT.addCartItems(
 “CARTNAME”,
 [
 {
 "id": 7,
 "value": 649,
 "count": 1
 }
],
 true);

BT.removeCartItems(cartName,
items, isTargeting)

Removes the specified items from the cart with the specified name. As
parameters, the public name for the cart, the list of items and the isTargeting
flag should be passed.

cartName = The public name of the cart of which the items should be
removed.
items = A json array containing the items that should be removed from the
cart. Each item should contain an identifier and a quantity.
isTargeting = This flag indicates whether or not this call should be used for
targeting.

E.g.

BT.addCartItems(
 “CARTNAME”,
 [
 {
 "id": 7,
 "count": 1
 }
],
 true);

BT.clearCart(cartName,
isTargeting)

Clears all items from the cart with the specified name. As parameters, the
public name for the cart and the isTargeting flag should be passed.

cartName = The public name of the cart that should be cleared.
isTargeting = This flag indicates whether or not this call should be used for
targeting.

E.g.

BT.clearCart(
 “CARTNAME”,
 true);

12 API Overview

Function Description

BT.checkoutCart(cartName,
isTargeting)

Performs a checkout operation on the cart with the specified name. As
parameters, the public name for the cart and the isTargeting flag should be
passed.

cartName = The public name of the cart that should be checked out.
isTargeting = This flag indicates whether or not this call should be used for
targeting.

E.g.

BT.checkoutCart(
 “CARTNAME”,
 true);

BT.getDoNotTrack() Return whether or not the tracking call will be executed for the current user. In
case the user has the DNT header/cookie set and the universe is configured as
‘do not track behavior’, this method will return false.

4.3 Recommendations
Currently, no API methods have been added to handle recommendations since we do not want to make it
visible to all customers yet. The result of the tracking call will contain the recommendations in the following
format:

"recommendations": [{
 "name": "RecommendationName",
 "items": [{
 "id": "1000",
 "fields": {
 "description": "Description of article 1000",
 "title": "Title of article 1000",
 "imgURL": “http://articles.com/1000”
 }
 }, {
 "id": "1002",
 "fields": {
 "description": "Description of article 1002",
 "title": "Title of article 1002",
 "imgURL": “http://articles.com/1002”
 }
 }]
 }]

4.4 Disable behavioral tracking
It is possible for a user to disable behavioral tracking, in the same way that cookies can be disabled. A
message appears on the screen of the user allowing him to allow or disable behavioral tracking.

Following is an example of how this can be achieved:

1. Add an html hyperlink to execute the opt-out logic:

Click here to opt-out of Selligent Site

2. Make sure the Site-javascript code is loaded in the page with this hyperlink.

In the above example, when a user clicks the opt-out link the function “optout” is launched. This function
sets a cookie for a long time and disables behavioral.js data collection. When a user returns later on to this

13 API Overview

site, a check is made if the opt-out cookie has been set. If it has, the analytics.js data collection will also be
disabled.

Note: This example code assumes that you are using a single web property on your site and are only

using a single domain. It only provides an opt-out function which is based on a long-term cookie. If

you require opt-in functionality or if your site uses multiple web properties or domains, you will

need to modify this example code, write your own opt-out code, or use other opt-out tools.

14 API Overview

4.5 Using exposedFields
ExposedFields is used to retrieve exportable data for a profile from Site.

The exposedFields property replaces the CRMData, profileData and tagValueData properties.
Currently both, the old and new, are still accepted in the request as well as in the result. The data is
returned in exposedFields as well as in the old properties, which should facilitate a migration from the old
properties to the new exposedField format. Existing scripts should be updated to use only exposedFields
as the older properties are currently marked as deprecated and may be removed in the future.

The fields that are available are configured in the universe configuration:

The exposedField property for a request is an array of objects with the following layout:

{
 “field”: “required, name of the field, configured in the universe”,
 “type”: “optional function type, used with tag data”,
 “parameter”: “optional parameter, for use with tag data”

}

The result format for exposedField is an array of objects with the following format:

{
 “field”: “name of the requested field”,
 “value”: [”array of values”, “array of values”]
}

15 API Overview

Example Request:

wa.bt_queue.push({
 "customIdentifier": "",
 "async": false,
 "isEvent": false,
 "exposedFields": [
 { "field": "Number_of_hits_in_the_last_day" },
 { "field": "DAYOFWEEK", "type": "Count", "parameter": "" },
 { "field": "Is_quality_profile" },
 { "field": "Do_Not_Track_is_set" },
 { "field": "The_MASTER_MAIL_value" }
]
});

Example Response:
{
 "doNotTrack": false,
 "profileId": "…",
 "profile": null,
 "targetingInfo": null,
 "profileInfo": {
 "exposedFields": [
 {"field": "DAYOFWEEK","value": ["6"]},
 {"field": "Number_of_hits_in_the_last_day","value": ["2"]},
 {"field": "Is_quality_profile","value": ["True"]},
 {"field": "Do_Not_Track_is_set","value": ["False"]}
],
 “profileFields”: [
 {"field": "Number_of_hits_in_the_last_day","value": "2"},
 {"field": "Is_quality_profile","value": "True"},
 {"field": "Do_Not_Track_is_set","value": "False"}
],
 "crmFields": [],
 “tags”: [
 {"tag": "DAYOFWEEK", "values": ["6"]}
],
 "offers": []
 }
}

16 API Overview

The type and parameter property are optional and can only be used with tags. If the tag’s configuration is
set to ‘defined in tracking script’, a function and optional parameter needs to be specified in the tracking
script.

The possible options for type and parameter are :

Type: a choice among following options is possible:

 Count: counts the number of values measured for the tag. (tag value and its sub-values) at the
given level (parameter)

 Last: the last value measured for this tag

 Last3: the last 3 values measured for this tag

 TopCategory: returns the highest scoring value for the tag at the given level

 Top3Category: returns the 3 highest scoring values for the tag at the given level (parameter)

 TopCategoryScore: returns the score of the highest scoring value for the tag, for the given level
(see parameter).

 Top3CategoryScore: returns the scores of the 3 highest scoring values, for the given level (see
parameter). Returned pipe (|) separated. E.g. 173,221|114,793|57,410

 TopTagValue: returns the highest scoring value at any level in the tag, starting from the given
level (parameter)

 Top3TagValue: returns the 3 highest scoring values at any level in the tag, starting from the given
level (parameter)

 TopTagValueScore: returns the score for the highest scoring value at any level in the tag, starting
from the given level (parameter)

 Top3TagValueScore: returns the scores of the 3 highest scoring values at any level in the tag,
starting from the given level (parameter)

Parameter: optional; indicates the hierarchical level to perform the “type”-function on. If empty, the top
level is used.

